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Abstract

Motivation

Evaluate the full suit, variable emissivity radiator architecture’s 

potential for reducing the consumable burden associated to 

current EVA thermal control mechanisms

Purpose

Present an overview of work completed to address these needs, 

and collect feedback where appropriate

Results

Provide first-order environmental and operational guidelines for future 

consideration

Future Work

Complete remaining thermal vacuum assessment and compile work 

into dissertation
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Introduction - Fundamental Premise

• The space suit must provide the 

ability to “support human life 

and enable functionality [within 

working environment]” [Klaus et al., 2006]

• In terms of thermal – system must 

maintain the astronaut’s core 

temperature to the appropriate 

level to avoid impaired physical 

and mental performance [Buckey, 

2006]
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Ed White, Gemini 4
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Apollo LCG
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Gene Cernan & Harrison  Schmitt, Apollo 17
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Sublimator Drawbacks

• Impacts to transport and logistics [Eckart, 1996]

– ~3.6 kg of water lost per EVA [Nabity et al., 2007; Bue et al., 2013]

• Environment contamination concerns

– Sensitive hardware – Hubble [Hedgeland et al., 1994]

– Forward contamination of solar system bodies [Race et al., 2003; Conley and 

Rummel, 2008; Conley and Rummel, 2010]

• Performance degradation over time [Birur & Westheimer, 2007; Leimkuehler 

& Stephan, 2008; Sheth et al., 2012]

• Potential alternative thermal control method

– Use the majority of a space suit’s surface area as a radiator

• Proposed as early as 1965 for LEO [Richardson, 1965]

• Elaborated upon in the Chameleon Suit [Hodgson, 2001; Hodgson et al., 2004]

• Consideration of electrochromic devices to modulate dissipation 

potential [Metts, 2010; Metts et al., 2011]
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Research Objectives Overview

• Investigate a potential space suit thermal control 

technology for closed-loop (non-venting) operations

• Proposed architecture: full suit flexible radiator with 

variable infrared electrochromic surfaces

– Environment Characterization

– Integration Architecture

– Control Approach

• Results provide expanded operational and integration 

requirements (guidelines) from previous investigations
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INDIVIDUAL ASSESSMENTS
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Emissivity Impact on Performance Potential

• In otherwise static environment determine how sink temperature 
varies with changes in emissivity when radiator has a non-zero solar 
absorptivity

– Evaluation of variable heat dissipation capacity variation at 
lunar pole with variations in radiator emissivity. 

– Established that an emissivity range of 0.3-0.8 is capable of 
providing ~275-1100 W of heat dissipation.
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 Static suit surface properties

 Suit approximated as a flat plate
 Equal area division where one side 

shades the other from the direct 
solar component

 Assume infinite plane lunar 
surface in local EVA environment 
(e.g. featureless)

 View Factor (VF) for either radiator 
area is 0.5 to both the lunar surface 
and space environment

 Equation set for evaluations:
 Incident solar flux 𝑆 of 1368𝑊/𝑚2

[Gilmore, 2002]

 Lunar surface solar absorptivity 
𝛼𝐿𝑢𝑛𝑎𝑟 of 0.92

 Angle from subsolar 𝜃
𝑞𝐼𝑅
′′ = 𝑐𝑜𝑠𝜃 ∗ 𝑉𝐹 ∗ 𝑆𝛼𝐿𝑢𝑛𝑎𝑟
𝑞𝑠𝑢𝑛
′′ = 𝑉𝐹 ∗ 𝑆 𝑜𝑟 0

𝑞𝐴𝑙𝑏
′′ = 𝑐𝑜𝑠𝜃 ∗ 𝑉𝐹 ∗ 𝑆 1 − 𝛼𝐿𝑢𝑛𝑎𝑟

𝑞𝑟𝑎𝑑
′′ = 𝜖 𝜎 𝑇𝑠𝑢𝑟𝑓

4 − 𝑞𝐼𝑅
′′ − 𝛼 𝑞𝑠𝑢𝑛

′′ + 𝑞𝐴𝑙𝑏
′′

𝑞𝑟𝑎𝑑 = 
𝐴

2
𝑞𝑟𝑎𝑑
′′ =
𝐴

2
2𝜖 𝜎  𝑇𝑠𝑢𝑟𝑓

4 − 𝑞𝐼𝑅
′′ − 𝛼 𝑞𝑠𝑢𝑛

′′ + 2𝑞𝐴𝑙𝑏
′′

Radiative Heat Fluxes During Lunar EVA

Define 𝑞𝑟𝑎𝑑 and solve for 𝑇𝑠𝑢𝑟𝑓

Temperature requirements for 300W dissipation 

with gas pressure suit area



Lunar Environment Impact on Utilization

• Define radiator surface temperature guidelines for desired amount 
of heat dissipation on the lunar surface for radiator with static 
surface properties
– Characterize baseline radiator temperature to dissipate 300 W and 700 W 

of heat on lunar surface using the full suit flexible radiator concept 

• Black Body: 𝛼 = 0, 𝜖 = 1; EMU: : 𝛼 = 0.18, 𝜖 = 0.84; Degraded : 𝛼 = 0.5, 𝜖 = 0.9

– Identify threshold latitudes for long duration mission sites

– Can be used to characterize allowable thermal resistance
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Pixel Integration Concept & Considerations

• Need to define pixel area and corresponding number of 

pixels

• Electrochromic control modes: continuously variable 

vs. high-low state mixing

• Radiator integration modes: constant temperature 

(dual-loop) vs. constant flux (uniform heat leak)
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First-Order Pixel Area Determination

• Used a cylindrical space suit approximation in a lunar 

pole environment

• Key Results

– Constant Temperature

• Either 1 or ~48 individual pixels depending on control mode

• Required emissivity variation of 0.169 to 0.495

– Constant Flux

• ~400 individual pixels in continuously variable emissivity control

– No transverse conduction within suit walls considered

• Required emissivity variation of 0.122 to 0.967

– Should consider these values to be a minimum baseline as more 

complex geometries will generally require additional pixelation
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Dynamic System Model

• Constructed simplified 7-node human metabolic model 

based on previous work [Crawford et al., 2000; Campbell et al., 2000; 

Montgomery, 1974; Stolwijk and Hardy, 1966]

• Model allows for asymmetric external environment 

exposure to a two-sided radiator approximation
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Dynamic Modeling Output

Example Environment Variation

Profile

• Bulk variations in incident IR 
flux
– Step increase of 100 W/m2 at 

10 min.

– Additional step increase of 125 
W/m2 at 25 min.

– Return to nominal condition at 
31 min

This variation is consistent with 
bulk flux changes that may be 
experienced when entering a 
surface region with complex 
geometries (boulder, etc.)
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Dynamic Modeling Discussion
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• 4 test scenarios were completed: 2 metabolic variations 

and 2 environment variations

• Emissivity saturation shown to have a negative impact 

on the simulated human’s thermal condition

– Short excursions can be compensated for by the system

– Prolonged exposure can cause the model to diverge 

(instabilities) 

• Nature of current model dictated that little or no 

variation in BHS is experienced before the system 

diverges

– Current output does not map one-to-one with NASA HIDH

– No excursion into potential dangerous regimes 

Citation: 
Massina, C.J., Nabity, J.A., and Klaus, D.M. (2014). Modeling the Human Thermal Balance in a Space Suit 
using a Full Surface, Variable Emissivity Radiator. ICES-2015-026.



Martian Surface EVA Extension

• Examined diurnal 
variations in external 
environment for 4 
seasons at 27.5 °S
latitude

• Considered variations in 
wind speed, absorptivity, 
and area

• Seasonal supplemental 
thermal control 
guidelines identified
– Limit heater capacity: 

631 W

– Limit additional 
dissipation capacity: 
1423 W
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Diurnal theoretical emissivity values for summer conditions 

and sustained wind speed of 15 m/s

Citation: 
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ONGOING & FUTURE WORK
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Mixed Emissivity Verification in Thermal Vac
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• Assess feasibility and assumption 
quality for constant temperature and 
uniform flux integration 

• Demonstrate impacts of high-low 
emissivity state mixing on thermal 
performance

– Thermal vacuum, at CU

– Test article is under construction and 
testing is to occur Fall 2015

JSC Electrochromic Test Article

0.550.3 0.425 0.675 0.8



Key Points for Further Elaboration

• Dynamic model expansion in fidelity and test scenarios

– Use or expansion of 41-node metabolic man or Wissler models 

for asymmetric environments

– Use more realistic working environment fluxes [Hager et al., 2015]

• Further definition of external environment restrictions for 

using the architecture

• Parametric definition of heat removal layer properties for 

maintaining thermal equilibrium

• Construction of an integrated test article for further 

testing and concept verification

21TFAWS 2015 – August 3-7, 2015 – Silver Spring, MD



CONCLUSIONS
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Summary

• Analytically and empirically evaluated the potential to 

achieve closed-loop EVA thermal control by integrating 

variable IR emissivity electrochromics into a full suit 

flexible radiator thermal control architecture

• Provided a robust mechanism for assessing integration 

feasibility 

• Defined heat transport properties and requirements for 

supplemental heat rejection systems

• The scope of this work is very much inline with NASA’s 

EVA systems technology development goals
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Conclusions

• The full suit radiator with variable emissivity surfaces 

architecture has proven to be feasible for several 

environments, at the level of the investigations

• Outputs could be used to for operations planning and 

determination of integration requirements

• Results suggest that a hybrid thermal control system is 

required to expand EVA operational regimes 

• Suggest that additional work be completed in physical 

device development so further integrated testing can be 

completed
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QUESTIONS
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